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INTRODUCTION 

 

One of the most important branches of continuum mechanics is the 

classical theory of elasticity, which is concerned with the systematic 

study of the response of elastic bodies to the action of forces which 

deform it. This response in characterized by the stress and strain 

distributions inside a body that are developed because of the 

applied tractions or change in temperature. A body is said to be 

elastic if it regains its original shape when the forces causing 

deformation are removed. The elastic property of the material is 

shared by all substances provided that the deformations do not 

exceed certain limits determined by the constitutive characteristics 

of the body. The elastic property is characterized mathematically by 

certain functional relationships connecting forces and deformations. 
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An elastic solid that undergoes only an infinitesimal deformation 

and for which the governing material law is linear is called a linear 

elastic solid. 

REVIEW OF LITERATURE 
 
The classical theory of elasticity serves as an excellent model for 

studying the mechanical behaviour of a wide variety of solid 

material and is used extensively in civil, mechanical and 

aeronautical engineering design. This is the oldest established 

theory governing the behaviour of deformable solid materials, 

founded in its present form in the early 19th century. In the theory 

of linear elasticity, we are concerned with an ideal material 

governed by Hooke’s law (1678), which represents a linear 

relationship between the stresses and strains. Hooke’s law has 

influenced the scientific thoughts for a considerably long period for 

the classical linear infinitesimal theory of elasticity and its results 

agreed with experiments quite well. 

During the 150 years period following the discovery of 

Hooke’s law, the growth of the science of elasticity proceeded from a 
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synthesis of solutions of special problems. This gave in the early 

nineteenth century a fragmentary theory of flexure of beams, an 

incomplete theory of torsion, the rudiments of the theory of stability 

of columns, and a few isolated results on bending and vibration of 

plates. 

The first attempt to deduce general equations of 

equilibrium and vibration of elastic solids was made by Navier on 

May 14, 1821. This date marks the birth of the mathematical theory 

of elasticity. Navier deduced a set of three macroscopic differential 

equations for the components of displacement in the interior of an 

isotropic elastic solid. Navier also obtained the equilibrium 

equations on the surface of the solid (the boundary conditions) with 

the aid of Lagrange’s principle of virtual work. Navier’s work 

attracted the attention of Cauchy (1789-1857), who, proceeding 

from different assumptions, gave a formulation of the linear theory 

of elasticity that remains virtually unchanged to the present day. 

RESEARCH METHODOLOGY 

 

Thermoelasticity 
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The theory of elasticity was extended to include thermal effects. The 

theory of thermoelasticity is concerned with the influence of the 

thermal state of an elastic solid upon the distribution of strain and 

with the inverse effect, that of deformation upon the thermal state 

of an elastic medium. Thermoelasticity is the interaction between 

deformation and thermal fields. Thermoelasticity was stimulated by 

the various engineering sciences. A remarkable progress in the field 

of aircraft and machine structure has given rise to numerous 

problems in which thermal stresses play a role of primary 

importance. It comprises the heat conduction and stress and strain 

that arise due to the flow of heat. Thermoelasticity makes it possible 

to determine the stresses produced by the temperature field and to 

calculate the temperature distribution due to an action of time 

dependent forces and heat sources. 

The change of body temperature is caused not only by the external 

and internal heat sources, but also by the process of deformation 

itself. In classical elasticity, coupling terms in heat conduction 

equation and inertia terms in elastic equations of motion are 
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neglected. But this is not possible if temperature undergoes a large 

and sudden change. In thermoelasticity, inertia terms are included 

in the equation of motion. It is desirable for all elasto-dynamic 

problems to consider the temperature’s dependence of 

displacements giving rise to coupled thermoelastic equations. 

The assumptions that are usually made are: 
 

(i) the deformation is very small, 
 

(ii) the materials behave elastically at all times and in the 

same manner in all directions, 

(iii) the temperature field is determined by taking into 

considerations, the effect of coupling of temperature and strain 

fields. Temperature field is always dependent on the deformation. 

Theory of uncoupled Thermoelasticity 

The theory of thermoelasticity deals with the effect of 

mechanical and thermal disturbances on an elastic body. In the 

nineteenth century, Duhamel (1837) and Neumann (1885) 

introduced the theory of uncoupled thermoelasticity. There are two 

shortcomings of this theory. First, the fact that the mechanical 
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state of the elastic body has no effect on the temperature is not in 

accordance with true physical experiments. Second, the heat 

equation being parabolic predicts an infinite speed of propagation 

for the temperature, which again contradicts physical observations. 

Coupled theory of Thermoelasticity 

Biot (1956) formulated the theory of coupled 

thermoelasticity to overcome the paradox inherent in the classical 

uncoupled theory that elastic changes have no effect on the 

temperature. In this theory, the equations of elasticity and of heat 

conduction are coupled. However, this theory shares the defect of 

the uncoupled theory in that it predicts infinite speeds of 

propagation for heat waves, i.e., when an elastic solid is subjected 

to a thermal disturbance, the effect is felt at a location far from the 

source, instantaneously. Among the works in this theory, Weiner 

(1957) proved a uniqueness theorem, Nickell and Sackmann (1968) 

obtained some  variational principles and Hetnarski (1961, 1964  a, 

b) has solved some problems in the form of series of functions and 

for small times. Other important contributions to the subject are 
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attributable to Nowacki (1964, 1965), Nowacki and Ignaczak (1966) 

and Boley and Tolins (1962). A good review of the subject is found 

in the books of Nowacki (1962) and Dhaliwal and Singh (1980). 

Diffusion 

 

Diffusion can be defined as a random walk, of an ensemble of 

particles, from regions of high concentration to regions of lower 

concentration. There is now a great deal of interest in the study of 

this phenomenon, due to its many geophysical and industrial 

applications. In integrated circuit fabrication, diffusion is used to 

introduce “dopants” in controlled amounts into the semiconductor 

substrate. In particular, diffusion is used to form the base and 

emitter in bipolar transistors, form integrated resistors, form the 

source/drain regions in metal oxide semiconductor (MOS) 

transistors and dope poly-silicon gates in MOS transistors. Study of 

the phenomenon of diffusion is used to improve the conditions of oil 

extractions (seeking ways of more efficiently recovering oil from oil 

deposits). These days, oil companies are interested in the process of 

thermodiffusion for more efficient extraction of oil from oil deposits. 
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Thermoelastic diffusion 

 

Thermodiffusion in an elastic solid is due to coupling of the fields of 

temperature, mass diffusion and that of strain. Heat and mass 

exchange with the environment during thermodiffusion in an elastic 

solid. Nowacki (1974 a, b, c, d) developed the theory of 

thermoelastic diffusion. In this theory, the coupled thermoelastic 

model is used. This implies infinite speeds of propagation of 

thermoelastic waves. Dudziak and Kowalski (1989) also discussed 

the theory of thermodiffusion for solids. Olesiak and Pyryev (1995) 

discussed a coupled quasi-stationary problem  of thermodiffusion 

for an elastic cylinder. They studied the influences of cross effects 

arising from the coupling of fields of temperature, mass diffusion 

and strain. Due to these cross effects, the thermal excitation results 

in an additional mass concentration and the mass concentration 

generates the additional field of temperature. 

Sherief et al. (2004 b) generalized the theory of thermoelastic 

diffusion, which allows the finite speeds of propagation for 
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thermoelastic and diffusive waves. The development of generalized 

theory of thermoelastic diffusion by Sherief et al. (2004 b) provides a 

chance to the study the wave propagation in such an interesting 

media. 

Aouadi (2006 a, b) discussed the thermoelastic-diffusion 

interactions in an infinitely long solid cylinder subjected to a 

thermal shock on its surface which is in contact with a permeating 

substance and also studied a problem of variable electrical and 

thermal conductivity in the theory of generalized thermoelastic 

diffusion. A detail account of the plane harmonic generalized 

thermoelastic diffusive waves in heat conducting solids has been 

considered by Sharma (2007). Deswal and Choudhary (2008) 

investigated the disturbances in a homogeneous, isotropic elastic 

medium with generalized thermoelastic diffusion, when a moving 

source is acting along one of the coordinate axis on the boundary of 

the medium. 

Inversion of the Laplace transform 
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We shall now outline the method used to invert the Laplace 
 

transforms  in  the  above equations. Let be  the  L.T.  of some 
 

function g(t). Following Honig and Hirdes (1984), the Laplace 
 

transformed function can be inverted as follow: 
 

 
 

g t L 1
 ds , (2.4.1) 

 
 

 

where g s L g t e st g t 
0 

dt , (2.4.2) 

 

 

with s = v+iw; 
 
 

v R is arbitrary but greater than the real parts of all the 
 

singularities of . 
 

 

Now g s e st g t dt 
0 

e v iw t g t 
0 

dt , 

 

 

 
e vt g t 

0 

 
coswt 

 
i sin wt 

 
dt, 

 

 

Re g v iw Im g v iw (2.4.3) 
 

 

Substituting eq. (2.4.3) into eq. (2.4.1) ,we get 

. 

i . 
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Combining eqs. (2.4.3) and (2.4.4) ,we obtain 
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In eq. (2.4.5), sin w is an odd function of w ; therefore, the second 
 

integral is zero and the equation is simplified as 
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Expanding the function h t e vt g in a Fourier series in the interval 
 

[0,2T ], Durbin (1974) derived the approximate formula 
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where F1 v, t,T  is the discretization error given by 
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As the infinite series in eq. (2.4.7) can only be summed up to a 

finite number N of terms, a truncation error is introduced in the 

form of 
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(2.4.10) 

 

It is obvious from eq. (2.4.8) that the discretization error can 

be made arbitrarily small if the free parameter vT is large enough. 

Unfortunately, the truncation error in eq. (2.4.9) may diverge for 

large values of vT. 

Two methods are used to reduce the total error. First, the 

Korrektur method is used to reduce the discretization error. Next, 

the -algorithm is used to reduce the truncation error and hence to 

accelerate convergence. 

With eq. (2.4.10), eq. (2.4.7) can be written in the form 
 
 

g t g t e 2vT g 
2T t F2     v,t,T , 

 

 

where the discretization error F2 v,t,T F1 v,t,T . Thus, the 
 

approximate value of g (t) becomes 

k 
t . 
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gNK t gN t e 
2vT

 g 2T , (2.4.11) 
 

 

Where N' is an integer less than N . Let 
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According to eq. (2.4.11), eq. (2.4.10) can be expressed as 
 

 

g N t 
1 2 

c0 . (2.4.13) 
 

 

Now the -algorithm is described in the following. Let N be an odd 

natural number, and let 
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, n m 1,2,3,... 
 

 

 

It can be shown in Honig and Hirdes (1984) that the sequence 1,1, 
 

, …… converges to g c0 faster than the sequence of 
 

partial sums 
 
sm , m 

 
1,2,3,... The actual procedure used to invert the 

 

Laplace transforms consists of using eq. (2.4.13) together with the 
 

-algorithm. The values of v and T are chosen according to the 

criteria outlined in Honig and Hirdes (1984). 
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